Потребность в знании точной плотности насыпных стройматериалов возникает при их транспортировке, трамбовке, заполнении емкостей и котлованов и подборе пропорций при приготовлении строительных растворов. Одним из учитываемых показателей служит коэффициент уплотнения, характеризующий соответствие укладываемых прослоек требованиям нормативов или степень уменьшения объема песка в процессе транспортировки. Рекомендуемое значение указывается в проектной документации и зависит от типа возводимой конструкции или вида работ.

Коэффициент уплотнения представляет собой нормативное число, учитывающее степень уменьшения наружного объема в процессе доставки и укладки с последующей трамбовкой (информацию об уплотнении щебня вы можете найти ). В упрощенном варианте он находится как отношение массы определенного объема, взятого при снятии проб, к эталонному параметру, полученному в лабораторных условиях. Его величина зависит от вида и размера фракций наполнителей и варьируется от 1,05 до 1,52. В случае песка для строительных работ он составляет 1,15, от него отталкиваются при расчете стройматериалов.

В итоге реальный объем поставляемого песка определяется путем умножения результатов обмера на показатель уплотнения при транспортировке. Максимально допустимое значение обязательно указывается в договоре на покупку. Возможны и обратные ситуации – для проверки добросовестности поставщиков находится объем по окончании доставки, его количество в м 3 делится на коэффициент уплотнения песка и сверяется с привезенным. Например, при транспортировке 50 м 3 после трамбовки в кузове автомобиля или вагонах на объект привезут не более 43,5.

Факторы влияния на коэффициент

Приведенное число является среднестатистическим, на практике оно зависит от множества разных критериев. К ним относят:

  • Размеры зерен песка, чистота и другие физические и химические свойства, определяемые местом и способом добычи. Характеристики источника получения могут меняться со временем, по мере выемки из карьеров возрастает рыхлость оставшихся слоев, для исключения ошибки насыпная плотность и сопутствующие параметры периодически проверяются в лабораторных условиях.
  • Условия перевозки (расстояние до объекта, климатические и сезонные факторы, вид используемого транспорта). Чем сильнее и дольше на материал влияет вибрация, тем эффективнее проводится трамбовка песка, максимальное уплотнение достигается при его перемещении с помощью автотранспорта, чуть меньшее – при железнодорожных перевозках, минимальное – при морских. При правильных условиях транспортировки воздействие влажности и минусовых температур сведено к минимуму.

Проверять эти факторы следует сразу, значения показателей допустимой естественной влажности и насыпной плотности прописываются в паспорте. Дополнительные объемы сыпучих веществ, обусловленные потерями при транспортировке, зависят от дальности доставки и принимаются равными 0,5% в пределах 1 км, 1% – свыше этого параметра.

Использование коэффициента при подготовке песчаных подушек и строительстве дорог

Характерной особенностью любых сыпучих стройматериалов является изменение объема при выгрузке на свободном участке или его трамбовке. В первом случае песок или грунт становятся рыхлыми, в процессе хранения частицы оседают и прилегают другу к другу практически без пустот, но все еще не соответствуют нормативным. На последнем этапе – укладке и распределении составов на дне котлована учитывается коэффициент относительного уплотнения песка. Он является критерием качества работ, проводимых при подготовке траншей и строительных площадок и варьируется от 0,95 до 1, точное значение зависит от целевого назначения прослойки и способа засыпки и трамбовки. Оно определяется расчетным путем и обязательно указывается в проектной документации.

Уплотнение засыпаемого обратно грунта считается таким же обязательным действием, как и при закладке песчаной подушки под фундаментами зданий или при обустройстве дорожного полотна. Для достижения нужного эффекта используется специальное оборудование – катки, вибрационные плиты и виброштампы, при его отсутствии трамбовку проводят ручным инструментом или ногами. Максимально допустимая толщина обрабатываемого слоя и требуемое число проходов относятся к табличным величинам, это же касается рекомендуемого минимума подсыпки поверх труб или коммуникаций.

В процессе проведения трамбовки песка или грунта их насыпная плотность увеличивается, а объемная площадь неизбежно уменьшается. Это обязательно учитывается при расчете количества закупаемого материала наряду с общими потерями на выветривание или величиной запаса. При выборе способа уплотнения важно помнить, что любые наружные механические воздействия оказывают влияние только на верхние слои, для получения покрытия с нужным качеством требуется вибрационное оборудование.

Высокие темпы строительства, ускоренная застройка жилых кварталов, офисных зданий заставляет задуматься о качественных характеристиках бетона. Прочный, крепкий фундамент без бетонного раствора создать невозможно. Бетон – главный соединительный, конструкционный материал в строительстве. Качество бетона напрямую влияет на прочность, срок эксплуатации конструкций. Приготовить раствор можно из песчано-гравийных смесей, уделяя внимание источнику возникновения и соблюдая необходимое соотношение компонентов.

Назначение ПГС

Песчано-гравийная смесь, или по-другому ПГС, состоит из и гравия. Подготавливается состав двумя способами:

  • природным;
  • искусственным.

Полученная смесь очень востребована и используется в промышленном, дорожном, жилищном строительствах:

  • для ;
  • для изготовления монолитных, железобетонных конструкций;
  • в качестве дренажной прослойки дорожного покрытия;
  • выравнивание ландшафта.

Виды, структура смеси


Гравия в смеси должно быть до 75% от массы.

Пропорциональное содержание песка, гравия в составе смеси — главный критерий гравмассы. Гравия не должно быть более 75% от общей массы. Огромное значение уделяют размеру компонентов, а также проверяют на соответствие нормам стандартов. Опираясь на пропорциональное содержание компонентов, выделяют два вида песчано-гравийной семи:

  • Природная (пгс). Соотношение гравия в процентах по отношению к общей массе составляет не менее 10, и не больше 95 — 1/5 всего состава. Дополнительной обработке классический состав не подвергается. Гравийную массу добывают в карьере и сразу отгружают покупателю. В основном содержание гравия 10-20% от основной массы. Процент может вырасти до 30, если смесь добывали на водоемах. Размер элементов достигает от 10 до 70 мм. При отдельной договоренности с покупателем размер может быть больше заявленного, максимальная величина 10 см.
  • Обогащенная (опгс). Пропорции компонентов следующие: песок 30%, гравий до 70%. 3/4 всей обогащенной массы — гравий.

Получить обогащенный состав можно путем специальной подготовки. Соблюдая определенные пропорции, смешиваются необходимые компоненты. Результат — опгс. Учитывая процентное содержание гравия, выделяют пять групп обогащенной смеси.

  • 1 группа. Процент гравия от общей массы составляет 15-25%.
  • 2 группа. Количество гравия 25-30%.
  • 3 группа. Содержание компонента от 35 до 50%.
  • 4 группа. Процент гравия 50-65%.
  • 5 группа. Гравий в количестве от 65 до 75%.

Чем больший процент гравия содержится в растворе, тем тверже получается масса. От количества гравия зависят технические характеристики раствора, параметры эксплуатации. На окончательную стоимость концентрированных гравийных соединений влияет величина и процент содержания природного камня.

По месторождению и первоначальному источнику образования натуральные гравийные смеси подразделяют:

  • Овражные (горные) характерны примесью горных пород, форма природного камня остроугольная, размер различный. Неоднородность структуры данного вида не позволяет использовать овражно-горный вид для производства бетона. Широко используют смесь в качестве дренажа во время ремонта дорожных магистралей, засыпают котлованы, ямы.
  • Речные (озерные). Наблюдается небольшое количество глины, ракушняка. Форма элементов обкатанная.
  • Морские. Примеси содержатся в небольшом количестве, или отсутствуют. Форма камней округлая, плотная.

Озерно-речные, морские гравийные смеси используют для изготовления бетонного раствора, необходимого для строений особой прочности, заливки фундамента.

Особенности выбора массы


Обогащенная песчано-гравийная смесь должна иметь зерна гравия наибольшей крупности.

Во всех отраслях строительства: подготовка конструкций, заливка любого типа фундамента, требуется бетон. Ответственный подход к изготовлению бетонного раствора обеспечивает надежность, крепость конструкций. Важную роль в технологическом процессе играет соотношение компонентов.

Главный момент — правильно купить высококачественную продукцию, экономить не стоит. На бетоне отражается способ добычи материала. Обратите внимание на разнообразные примеси, структура массы не должна их содержать. Отсутствие посторонних компонентов увеличивает сцепление между гравмассой и другими составляющими раствора.

Для работы с фундаментом пользуются обогащенными смесями, так как в них количество гравия превышает содержание песка, что увеличивает плотность и уменьшает рыхлость раствора.

Степень уплотнения

Транспортировка сыпучего вещества приводит к его уплотнению. Сжатие контролируется нормативными строительными стандартами. Показательное значение, определяющее количество уменьшенного объема называется коэффициентом трамбовки (уплотнения). Стандарты уплотнения закреплены на государственном уровне.

Утрамбовка материала — естественный процесс, коэффициент зависит от массы партии. Важными моментами является качество материала и способ транспортировки. Среднестатистический показатель уплотнения равняется 1,2, согласно стандартам. Например, для песка показатель утрамбовки 1,15, для щебня — 1,1.

Показатель сжатия — важный момент в строительстве. В начале работ проводится подготовительный этап, во время которого определяется толщина, уровень, количество и другие показатели, необходимые для последующей работы. На принятие конечного результата влияет коэффициент уплотнения.


Трамбовка песчано-гравийной смеси.

При уплотнении грунта методом трамбовки, выдерживаются главные правила. Различия по глубине вырытой траншеи выравниваются уплотнением с самых высоких отметок, постепенно переходя к более низким. Уплотнение проводится до момента достижения плотности, которую предписывают нормативы. В момент работы со смесью не допускается промерзание материалов, влажность соответствует норме. Процесс считается завершенным, когда количество ударов не превышает установленные пределы. Так называемое правило «двух контрольных ударов».

Процесс подготовки бетона

Во время индивидуального строительства смесь готовят своими руками. При небольших объемах строительства нет необходимости нанимать дорогую строительную технику. Перед началом работ стоит определить структуру, провести расчет массы, подготовить соответствующие компоненты.

Для самостоятельного замешивания понадобится следующий расходный материал и инструменты:

  • запас цемента необходимой марки;
  • чистая теплая вода;
  • опгс;
  • емкость для замеса;
  • (бетономешалка);
  • ведро.

Правильно выдержанное соответствие компонентов влияет на качественный результат. Для обогащенного вида стоит сделать отношение частей 8 к 1, где первое — смесь, второе — цемент. Такой коэффициент был определен методом проб и проверок, и по настоящее время активно используется опытными мастерами. Какое количество воды добавить — дело индивидуальное. Стоит ориентироваться на сухость компонентов, постепенно добавлять жидкость до достижения нужной консистенции раствора.


Портландцемент - гидравлическое вяжущее вещество, твердеющее в воде и на воздухе.

Цемент для раствора используют тех марок, которые обеспечивают нужную прочность. Это м300, м500, м600. В последнее время пользуется популярностью портландцемент, который обладает отличными вяжущими свойствами. При небольшом объеме работ используют бетон м400, с учетом того, что готовую смесь стоит израсходовать на протяжении двух часов.

На качественный бетон, изготовленный из пгс влияет размер природного камня. Необходимую прочность раствор приобретает при размере гравия в 8 см. Выдерживаются необходимые пропорции: 6 — смесь, 1 — цемент.

Обязательное уплотнение грунта, щебня и асфальтобетона в дорожной отрасли является не только составной частью технологического процесса устройства земляного полотна, основания и покрытия, но и служит фактически главной операцией по обеспечению их прочности, устойчивости и долговечности.


Раньше (до 30-х годов прошедшего столетия) реализация указанных показателей грунтовых насыпей тоже осуществлялась уплотнением, но не механическим или искусственным путем, а за счет естественной самоосадки грунта под воздействием, в основном, его собственного веса и, частично, движения транспорта. Возведенную насыпь оставляли, как правило, на один–два, а в некоторых случаях и на три года, и только после этого устраивали основание и покрытие дороги.

Однако начавшаяся в те годы быстрая автомобилизация Европы и Америки потребовала ускоренного строительства обширной сети дорог и пересмотра методов их устройства. Существовавшая тогда технология возведения земляного полотна не соответствовала возникшим новым задачам и стала тормозом в их решении. Поэтому появилась потребность в разработке научно-практических основ теории механического уплотнения земляных сооружений с учетом достижений механики грунтов, в создании новых эффективных грунтоуплотняющих средств.

Это в те годы стали изучать и учитывать физико-механические свойства грунтов, оценивать их уплотняемость с учетом гранулометрического и влажностного состояния (метод Проктора, в России – метод стандартного уплотнения), были разработаны первые классификации грунтов и нормы на качество их уплотнения, стали внедряться методы полевого и лабораторного контроля этого качества.

Основным грунтоуплотняющим средством до указанного периода являлся гладковальцовый статический каток прицепного или самоходного типа, пригодный только для прикатки и выравнивания приповерхностной зоны (до 15 см) отсыпанного слоя грунта, да еще ручная трамбовка, применявшаяся главным образом на уплотнении покрытий, при ремонте выбоин и для уплотнения обочин и откосов.

Эти простейшие и малоэффективные (с точки зрения качества, толщины прорабатываемого слоя и производительности) уплотняющие средства стали вытесняться такими новыми средствами, как пластинчатые, ребристые и кулачковые (вспомнили изобретение 1905 г. американского инженера Фитцджеральда) катки, трамбующие плиты на экскаваторах, многомолотковые трамбующие машины на гусеничном тракторе и гладковальцовом катке, ручные взрыв-трамбовки («лягушки-попрыгушки») легкие (50–70 кг), средние (100–200 кг) и тяжелые (500 и 1000 кг).

В это же время появились первые грунтоуплотняющие вибрационные плиты, одна из которых фирмы «Лозенгаузен» (впоследствии фирма «Вибромакс») была достаточно крупной и тяжелой (24–25 т вместе с базовым гусеничным трактором). Ее виброплита площадью 7,5 м 2 располагалась между гусеницами, а двигатель мощностью 100 л.с. позволял вращать вибровозбудитель с частотой 1500 кол/мин (25 Гц) и перемещать машину со скоростью около 0,6–0,8 м/мин (не более 50 м/ч), обеспечивая производительность примерно 80–90 м 2 /ч или не более 50 м 3 /ч при толщине уплотняемого слоя около 0,5 м.

Более универсальным, т.е. способным уплотнять различные типы грунтов, в том числе связные, несвязные и смешанные, показал себя метод трамбования.

К тому же при трамбовании легко и просто можно было регулировать силовое уплотняющее воздействие на грунт за счет изменения высоты падения трамбующей плиты или трамбующего молотка. Вследствие этих двух достоинств метод ударного уплотнения в те годы стал наиболее востребованным и распространенным. Поэтому количество трамбующих машин и устройств множилось.

Уместно отметить, что и в России (тогда СССР) тоже понимали важность и необходимость перехода к механическому (искусственному) уплотнению дорожных материалов и налаживанию производства уплотняющей техники. В мае 1931 г. в мастерских г. Рыбинска (сегодня ЗАО «Раскат») был выпущен первый отечественный самоходный дорожный каток.

После завершения второй мировой войны совершенствование техники и технологии уплотнения грунтовых объектов пошло с не меньшим энтузиазмом и результативностью, чем в довоенное время. Появились прицепные, полуприцепные и самоходные пневмоколесные катки, ставшие на определенный период времени основным грунтоуплотняющим средством во многих странах мира. Их вес, в том числе единичных экземпляров, варьировался в довольно широких пределах – от 10 до 50–100 т, но большинство выпускавшихся моделей пневмокатков имело нагрузку на шину 3–5 т (вес 15–25 т) и толщину уплотняемого слоя, в зависимости от требуемого коэффициента уплотнения, от 20–25 см (связный грунт) до 35–40 см (несвязный и малосвязный) после 8–10 проходов по следу.

Одновременно с пневмокатками развивались, совершенствовались и приобретали все большую популярность, особенно в 50-е годы, вибрационные грунтоуплотняющие средства – виброплиты, гладковальцовые и кулачковые виброкатки. Причем, со временем на смену прицепным моделям виброкатков пришли более удобные и технологичные для выполнения линейных земляных работ самоходные шарнирно-сочлененные модели или, как их назвали немцы, «вальцен-цуг» (тяни-толкай).

Гладковальцовый виброкаток CA 402
фирмы DYNAPAC

Каждая современная модель грунтоуплотняющего виброкатка, как правило, имеет два исполнения – с гладким и кулачковым вальцом. При этом некоторые фирмы изготавливают к одному и тому же одноосному пневмоколесному тягачу два отдельных взаимозаменяемых вальца, а другие предлагают покупателю катка вместо целого кулачкового вальца всего лишь «насадку-обечайку» с кулачками, легко и быстро закрепляемую поверх гладкого вальца. Есть также фирмы, разработавшие подобные гладковальцовые «насадки-обечайки» для монтажа поверх кулачкового вальца.

Следует особо отметить, что сами кулачки на виброкатках, особенно после начала их практической эксплуатации в 1960 г. , претерпели существенные изменения в своей геометрии и размерах, что благотворно отразилось на качестве и толщине уплотняемого слоя и снизило глубину взрыхления приповерхностной зоны грунта.

Если раньше кулачки «шипфут» были тонкими (опорная площадь 40–50 см 2) и длинными (до 180–200 мм и более), то современные их аналоги «пэдфут» стали более короткими (высота в основном 100 мм, иногда 120–150 мм) и толстыми (опорная площадь около 135–140 см 2 с размером стороны квадрата или прямоугольника около 110–130 мм).

По закономерностям и зависимостям механики грунтов увеличение размеров и площади контактной поверхности кулачка способствует росту глубины эффективного деформирования грунта (для связного грунта она составляет 1,6–1,8 размера стороны опорной площадки кулачка). Поэтому слой уплотнения суглинка и глины виброкатком с кулачками «пэдфут» при создании надлежащих динамических давлений и с учетом 5–7 см глубины погружения кулачка в грунт стал составлять 25–28 см, что и подтверждают практические измерения. Такая толщина слоя уплотнения соизмерима с уплотняющей способностью пневмоколесных катков весом не менее 25–30 т.

Если к этому добавить существенно большую толщину уплотняемого слоя несвязных грунтов виброкатками и более высокую их эксплуатационную производительность, станет понятно, почему прицепные и полуприцепные пневмоколесные катки для уплотнения грунтов стали постепенно исчезать и сейчас практически не выпускаются или выпускаются редко и мало.

Таким образом, в современных условиях основным грунтоуплотняющим средством в дорожной отрасли подавляющего большинства стран мира стал самоходный одновальцовый виброкаток, шарнирно-сочлененный с одноосным пневмоколесным тягачом и имеющий в качестве рабочего органа гладкий (для несвязных и малосвязных мелкозернистых и крупнозернистых грунтов, в том числе скально-крупнообломочных) или кулачковый валец (связные грунты).

Сегодня в мире имеется более 20 фирм, выпускающих около 200 моделей таких грунтоуплотняющих катков различных типоразмеров, отличающихся друг от друга общим весом (от 3,3–3,5 до 25,5–25,8 т), весом вибровальцового модуля (от 1,6–2 до 17–18 т) и своими габаритами. Есть также некоторое различие в устройстве вибровозбудителя, в параметрах вибрации (амплитуда, частота, центробежная сила) и в принципах их регулирования. И конечно перед дорожником могут возникать, как минимум, два вопроса – как правильно выбрать подходящую модель подобного катка и как наиболее эффективно с ее помощью осуществить качественное уплотнение грунта на конкретном практическом объекте и с наименьшими издержками.

При решении таких вопросов следует предварительно, но достаточно точно установить те преобладающие типы грунтов и их состояние (гранулометрический состав и влажность), для уплотнения которых подбирается виброкаток. Особенно, или в первую очередь, следует обратить внимание на наличие в составе грунта пылеватых (0,05–0,005 мм) и глинистых (меньше 0,005 мм) частиц, а также на относительную его влажность (в долях оптимального ее значения). Эти данные дадут первые представления об уплотняемости грунта, возможном способе его уплотнения (чисто вибрационный или силовой виброударный) и позволят остановить свой выбор на виброкатке с гладким или кулачковым вальцом. Влажность грунта и количество пылеватых и глинистых частиц существенным образом влияют на прочностные и деформационные его свойства, а, следовательно, и на необходимую уплотняющую способность выбираемого катка, т.е. его способность обеспечить требуемый коэффициент уплотнения (0,95 или 0,98) в слое отсыпки грунта, задаваемом технологией устройства земляного полотна.

Большинство современных виброкатков работает в определенном виброударном режиме, выраженном в большей или меньшей степени в зависимости от их статического давления и вибрационных параметров. Поэтому уплотнение грунта, как правило, происходит под воздействием двух факторов:

  • вибраций (колебаний, сотрясений, шевелений), вызывающих снижение или даже разрушение сил внутреннего трения и небольшого сцепления и зацепления между частицами грунта и создающих благоприятные условия для эффективного смещения и более плотной переупаковки этих частиц под воздействием собственного веса и внешних сил;
  • динамических сжимающих и сдвигающих усилий и напряжений, создаваемых в грунте кратковременными, но частоударными нагружениями.

В уплотнении сыпучих несвязных грунтов основная роль принадлежит первому фактору, второй служит лишь положительным дополнением к нему. В связных грунтах, в которых силы внутреннего трения незначительны, а физико-механические, электрохимические и водно-коллоидные сцепления между мелкими частицами существенно выше и являются преобладающими, главным действующим фактором служит сила давления или напряжения сжатия и сдвига, а роль первого фактора становится второстепенной.

Исследованиями российских специалистов по механике и динамике грунтов в свое время (1962–64 гг.) было показано, что уплотнение сухих или почти сухих песков при отсутствии внешней их пригрузки начинается, как правило, при любых слабых вибрациях с ускорениями колебаний не менее 0,2g (g – земное ускорение) и завершается практически полным их уплотнением при ускорениях около 1,2–1,5g.

Для тех же оптимально влажных и водонасыщенных песков диапазон эффективных ускорений несколько выше – от 0,5g до 2g. При наличии внешней пригрузки с поверхности или при нахождении песка в зажатом состоянии внутри грунтового массива его уплотнение начинается лишь с некоторого критического ускорения, равного 0,3–0,4g, с превышением которого процесс уплотнения развивается более интенсивно.

Примерно в то же время и почти точно такие же результаты на песках и гравии были получены в экспериментах фирмы «Dynapac», в которых с помощью лопастной крыльчатки было показано также, что сопротивление сдвигу этих материалов в момент их вибрирования может снижаться на 80–98%.

На основании таких данных можно построить две кривые – изменения критических ускорений и затухания действующих от виброплиты или вибровальца ускорений грунтовых частиц с удалением от поверхности, где располагается источник колебаний. Точка пересечения этих кривых даст интересующую глубину эффективного уплотнения песка или гравия.

Рис. 1. Кривые затухания ускорения колебаний
частиц песка при уплотнении катком ДУ-14

На рис. 1 показаны две кривые затухания ускорений колебаний частиц песка, зафиксированные специальными датчиками, при его уплотнении прицепным виброкатком ДУ-14 (Д-480) на двух рабочих скоростях. Если принять для песка внутри грунтового массива критическое ускорение 0,4–0,5g, то из графика вытекает, что толщина прорабатываемого слоя таким легким виброкатком составляет 35–45 см, что неоднократно подтверждено полевым контролем плотности.

Недостаточно или плохо уплотненные сыпучие несвязные мелкозернистые (песчаные, песчано-гравийные) и даже крупнозернистые (скально-крупнообломочные, гравийно-галечниковые) грунты, уложенные в земляное полотно транспортных сооружений, довольно быстро обнаруживают свою низкую прочность и устойчивость в условиях различного рода сотрясений, ударов, вибраций, которые могут возникать при движении тяжелого грузового автомобильного и железнодорожного транспорта, при работе всевозможных ударных и вибрационных машин по забивке, например, свай или виброуплотнению слоев дорожных одежд и т.п.

Частота вертикальных колебаний элементов дорожной конструкции при проезде грузового автомобиля на скорости 40–80 км/ч составляет 7–17 Гц, а одиночный удар трамбующей плиты весом 1–2 т по поверхности грунтовой насыпи возбуждает в ней как вертикальные с частотой от 7–10 до 20–23 Гц, так и горизонтальные колебания с частотой, составляющей около 60% от вертикальных.

В недостаточно устойчивых и чувствительных к вибрациям и сотрясениям грунтах такие колебания способны вызывать деформации и заметные осадки. Поэтому не только целесообразно, но и необходимо их уплотнять вибрационными или любыми другими динамическими воздействиями, создавая в них колебания, сотрясения и шевеление частиц. И совершенно бессмысленно уплотнять такие грунты статической укаткой, что довольно часто можно было наблюдать на серьезных и крупных автодорожных, железнодорожных и даже гидротехнических объектах.

Многочисленные попытки уплотнить пневмоколесными катками маловлажные одноразмерные пески в насыпях железных и автомобильных дорог и аэродромов в нефтегазоносных районах Западной Сибири, на белорусском участке автодороги Брест–Минск–Москва и на других объектах, в Прибалтике, Поволжье, Республике Коми и Ленинградской обл. не давали требуемых результатов по плотности. Лишь появление на этих стройках прицепных виброкатков А-4 , А-8 и А-12 помогло справиться с этой острой в свое время проблемой.

Еще нагляднее и острее по своим неприятным последствиям может оказаться ситуация с уплотнением сыпучих крупнозернистых скально-крупнооблочных и гравийно-галечниковых грунтов. Устройство насыпей, в том числе высотой 3–5 м и даже более, из таких прочных и устойчивых к любым погодно-климатическим проявлениям грунтов с добросовестной их укаткой тяжелыми пневмоколесными катками (25 т), казалось бы, не давало серьезных поводов для беспокойства строителям, к примеру, одного из карельских участков федеральной автомобильной дороги «Кола» (Санкт–Петербург–Мурманск) или «знаменитой» в СССР железнодорожной Байкало-Амурской магистрали (БАМ).

Однако сразу же после пуска их в эксплуатацию стали развиваться неравномерные локальные просадки неправильно уплотненных насыпей, составившие в отдельных местах автодороги 30–40 см и исказившие до «пилообразного» с высокой аварийностью общий продольный профиль железнодорожного полотна БАМа.

Несмотря на схожесть общих свойств и поведения мелкозернистых и крупнозернистых сыпучих грунтов в насыпях, их динамическое уплотнение следует выполнять разными по весу, габаритам и интенсивности вибровоздействий вибрационными катками.

Одноразмерные пески без примесей пыли и глины очень легко и быстро переупаковываются даже при незначительных сотрясениях и вибрациях, но они обладают незначительным сопротивлением сдвигу и очень низкой проходимостью по ним колесных или вальцовых машин. Поэтому уплотнять их следует легкими по весу и крупными по габаритам виброкатками и виброплитами с малым контактным статическим давлением и средним по интенсивности вибрационным воздействием, чтобы не снижалась толщина уплотняемого слоя.

Использование на одноразмерных песках среднего А-8 (вес 8 т) и тяжелого А-12 (11,8 т) прицепных виброкатков приводило к чрезмерному погружению вальца в насыпь и выдавливанию песка из-под катка с образованием перед ним не только вала грунта, но и перемещающейся за счет «бульдозерного эффекта» сдвиговой волны, заметной глазу на расстоянии до 0,5–1,0 м. В итоге приповерхностная зона насыпи на глубину до 15–20 см оказывалась разрыхленной, хотя плотность нижележащих слоев имела коэффициент уплотнения 0,95 и даже выше. У легких виброкатков разрыхленная приповерхностная зона может понизиться до 5–10 см.

Очевидно можно, а в ряде случаев и целесообразно, на таких одноразмерных песках использовать средние и тяжелые виброкатки, но имеющие прерывистую поверхность вальца (кулачковую или решетчатую), что позволит улучшить проходимость катка, уменьшить сдвиг песка и снизить до 7–10 см разрыхляемую зону. Об этом свидетельствует успешный опыт автора по уплотнению насыпей из таких песков зимой и летом в Латвии и Ленинградской обл. даже статическим прицепным катком с решетчатым вальцом (вес 25 т), обеспечившим толщину уплотняемого до 0,95 слоя насыпи до 50–55 см, а также положительные результаты уплотнения этим же катком одноразмерных барханных (мелких и полностью сухих) песков в Средней Азии.

Крупнозернистые скально-крупнообломочные и гравийно-галечниковые грунты, как показывает практический опыт, тоже успешно уплотняются виброкатками. Но вследствие того, что в их составе имеются, а иногда и преобладают крупные куски и глыбы размером до 1,0–1,5 м и более, сдвинуть, расшевелить и переместить которые, обеспечивая тем самым требуемые плотность и устойчивость всей насыпи, не так-то легко и просто.

Поэтому на таких грунтах должны использоваться крупные, тяжелые, прочные и с достаточной интенсивностью виброударного воздействия гладковальцовые виброкатки весом прицепной модели или вибровальцового модуля у шарнирно-сочлененного варианта не менее 12–13 т.

Толщина прорабатываемого слоя таких грунтов подобными катками может достигать 1–2 м. Практикуются же такого рода отсыпки в основном на крупных гидротехнических и аэродромных стройках. В дорожной отрасли они встречаются редко, и поэтому дорожникам нет особой надобности и целесообразности приобретать гладковальцовые катки с весом рабочего вибровальцового модуля тяжелее 12–13 т.

Куда важнее и серьезнее для российской дорожной отрасли является задача уплотнения мелкозернистых смешанных (песок с тем или иным количеством примесей пыли и глины), просто пылеватых и связных грунтов, чаще встречающихся в повседневной практике, чем скально-крупнообломочные и их разновидности.

Особенно много хлопот и неприятностей возникает у подрядчиков с пылеватыми песками и с чисто пылеватыми грунтами, довольно широко распространенными во многих местах России.

Специфика этих непластичных малосвязных грунтов состоит в том, что при высокой их влажности, а таким переувлажнением «грешит» в первую очередь Северо-Западный регион, под влиянием движения автотранспорта или уплотняющего воздействия виброкатков они переходят в «разжиженное» состояние вследствие низкой их фильтрационной способности и возникающего повышения порового давления при избытке влаги.

С понижением влажности до оптимальной такие грунты сравнительно легко и хорошо уплотняются средними и тяжелыми гладковальцовыми виброкатками с весом вибровальцового модуля 8–13 т, для которых уплотняемые до требуемых норм слои отсыпки могут составлять 50–80 см (в переувлажненном состоянии толщины слоев понижаются до 30–60 см).

Если в песчаных и пылеватых грунтах появляются заметное количество глинистых примесей (не менее 8–10%), они начинают проявлять значительную связность и пластичность и по своей способности к уплотнению приближаются к глинистым грунтам, которые совсем плохо или вообще не поддаются деформированию чисто вибрационным способом.

Исследованиями профессора Хархуты Н. Я. показано, что при уплотнении таким способом практически чистых песков (примесей пыли и глины менее 1%) оптимальная толщина слоя, уплотняемого до коэффициента 0,95, может доходить до 180–200% от минимального размера контактной площадки рабочего органа вибромашины (виброплита, вибровалец с достаточными контактными статическими давлениями). С повышением содержания в песке указанных частиц до 4–6% оптимальная толщина прорабатываемого слоя сокращается в 2,5–3 раза, а при 8–10% и более достичь коэффициента уплотнения 0,95 вообще невозможно.

Очевидно, в таких случаях целесообразно или даже необходимо переходить на силовой способ уплотнения, т.е. на использование современных тяжелых виброкатков, работающих в виброударном режиме и способных создавать в 2–3 раза более высокие давления, чем, например, статические пневмоколесные катки с давлением на грунт 6–8 кгс/см 2 .

Чтобы происходило ожидаемое силовое деформирование и соответствующее уплотнение грунта, создаваемые рабочим органом уплотняющей машины статические или динамические давления должны быть как можно ближе к пределам прочности грунта на сжатие и сдвиг (около 90–95%), но и не превышали его. Иначе на контактной поверхности появятся трещины сдвигов, выпоры и другие следы разрушения грунта, которые к тому же будут ухудшать условия передачи в нижележащие слои насыпи необходимых для уплотнения давлений.

Прочность связных грунтов зависит от четырех факторов, три из которых относятся непосредственно к самим грунтам (гранулометрический состав, влажность и плотность), а четвертый (характер или динамичность прикладываемой нагрузки и оцениваемый скоростью изменения напряженного состояния грунта или, с некоторой неточностью, временем действия этой нагрузки) относится к воздействию уплотняющей машины и реологическим свойствам грунта.

Кулачковый виброкаток
фирмы BOMAG

С увеличением содержания глинистых частиц прочность грунта возрастает до 1,5–2 раз по сравнению с песчаными грунтами. Реальная влажность связных грунтов является очень важным показателем, влияющим не только на прочность, но и на их уплотняемость. Наилучшим образом такие грунты уплотняются при так называемом оптимальном содержании влаги. С превышением реальной влажностью этого оптимума снижается прочность грунта (до 2 раз) и существенным образом понижается предел и степень возможного его уплотнения. Наоборот, с уменьшением влажности ниже оптимального уровня предел прочности резко возрастает (при 85% от оптимальной – в 1,5 раза, а при 75% – до 2 раз). Вот почему так трудно уплотнять маловлажные связные грунты.

По мере уплотнения грунта растет и его прочность. В частности, по достижении в насыпи коэффициента уплотнения 0,95 прочность связного грунта повышается в 1,5–1,6 раза, а при 1,0 – в 2,2–2,3 раза по сравнению с прочностью в начальный момент уплотнения (коэффициент уплотнения 0,80–0,85).

У глинистых грунтов, обладающих выраженными реологическими свойствами вследствие их вязкости, динамическая прочность на сжатие может возрасти в 1,5–2 раза при времени их нагружения 20 мсек (0,020 сек), что соответствует частоте приложения виброударной нагрузки 25–30 Гц, а на сдвиг – даже до 2,5 раз по сравнению со статической прочностью. При этом динамический модуль деформации таких грунтов повышается до 3–5 раз и более.

Это свидетельствует о необходимости прикладывать к связным грунтам более высокие уплотняющие давления динамического характера, чем статического, чтобы получить одну и ту же деформацию и результат уплотнения. Очевидно поэтому некоторые связные грунты можно было эффективно уплотнять статическими давлениями 6–7 кгс/см 2 (пневмокатки), а при переходе на их трамбование потребовались динамические давления порядка 15–20 кгс/см 2 .

Такое различие обусловлено разной скоростью изменения напряженного состояния связного грунта, при росте которой в 10 раз его прочность повышается в 1,5–1,6 раза, а в 100 раз – до 2,5 раз. У пневмоколесного катка скорость изменения контактных давлений во времени составляет 30–50 кгс/см 2 *сек, у трамбовок и виброкатков – около 3000–3500 кгс/см 2 *сек, т.е. повышение составляет 70–100 раз.

Для правильного назначения функциональных параметров виброкатков в момент их создания и для управления технологическим процессом выполнения этими виброкатками самой операции уплотнения связных и других разновидностей грунтов крайне важно и необходимо знать не только качественное влияние и тенденции изменения пределов прочности и модулей деформации этих грунтов в зависимости от их грансостава, влажности, плотности и динамичности нагрузки, но и иметь конкретные значения этих показателей.

Такие ориентировочные данные по пределам прочности грунтов с коэффициентом плотности 0,95 при статическом и динамическом их нагружении установлены профессором Хархутой Н. Я. (табл. 1).


Таблица 1
Пределы прочности (кгс/см 2) грунтов с коэффициентом уплотнения 0,95
и оптимальной влажностью

Уместно отметить, что с повышением плотности до 1,0 (100 %) динамическая прочность на сжатие некоторых высокосвязных глин оптимальной влажности возрастет до 35–38 кгс/см 2 . При снижении же влажности до 80% от оптимальной, что может быть в теплых, жарких или засушливых местах ряда стран, их прочность может достигать еще больших значений – 35–45 кгс/см 2 (плотность 95%) и даже 60–70 кгс/см 2 (100%).

Конечно, уплотнять подобные высокопрочные грунты можно только тяжелыми виброударными кулачковыми катками. Контактных давлений гладковальцовых виброкатков даже для обычных суглинков оптимальной влажности будет явно недостаточно, чтобы получить требуемый нормативами результат уплотнения.

До недавнего времени оценка или расчет контактных давлений под гладким или кулачковым вальцом статического и вибрационного катка производились очень упрощенно и приближенно по косвенным и не очень обоснованным показателям и критериям.

На основе теории колебаний, теории упругости, теоретической механики, механики и динамики грунтов, теории размерностей и подобия, теории проходимости колесных машин и изучения взаимодействия вальцового штампа с поверхностью уплотняемого линейно-деформируемого слоя асфальтобетонной смеси, щебеночного основания и грунта земляного полотна получена универсальная и довольно простая аналитическая зависимость для определения контактных давлений под любым рабочим органом катка колесного или вальцового типа (пневмошинное колесо, гладкий жесткий, обрезиненный, кулачковый, решетчатый или ребристый валец):

σ o – максимальное статическое или динамическое давление вальца;
Q в – весовая нагрузка вальцового модуля;
R o – общая сила воздействия вальца при вибродинамическом его нагружении;
R o = Q в K d
E o – статический или динамический модуль деформации уплотняемого материала;
h – толщина уплотняемого слоя материала;
В, Д – ширина и диаметр вальца;
σ p – предел прочности (разрушения) уплотняемого материала;
K d – коэффициент динамичности

Более подробная методология и пояснения к ней изложены в аналогичном сборнике-каталоге «Дорожная техника и технология» за 2003 г. Здесь уместно лишь указать, что в отличие от гладковальцовых катков при определении полной осадки поверхности материала δ 0 , максимальной динамической силы R 0 и контактного давления σ 0 у кулачковых, решетчатых и ребристых катков используется эквивалентная гладковальцовому ширина их вальцов, а у пневмоколесных и обрезиненных катков – эквивалентный диаметр.

В табл. 2 представлены результаты расчетов по указанной методике и аналитическим зависимостям основных показателей динамического воздействия, в том числе контактных давлений, гладковальцовых и кулачковых виброкатков ряда фирм с целью анализа их уплотняющей способности при отсыпке в земляное полотно одного из возможных типов мелкозернистых грунтов слоем 60 см (в рыхлом и плотном состоянии коэффициент уплотнения равен соответственно 0,85–0,87 и 0,95–0,96, модуль деформации Е 0 = 60 и 240 кгс/см 2 , и значение реальной амплитуды колебаний вальца тоже соответственно a = A 0 /A ∞ = 1,1 и 2,0), т.е. все катки имеют одинаковые условия для проявления своих уплотняющих способностей, что придает результатам расчета и их сравнения необходимую корректность.

ЗАО «ВАД» имеет в своем парке целую гамму исправно и эффективно работающих грунтоуплотняющих гладковальцовых виброкатков фирмы «Dynapac», начиная от самого легкого (СА152D ) и кончая самым тяжелым (СА602D ). Поэтому было полезно получить расчетные данные для одного из таких катков (СА302D ) и сравнить с данными аналогичных и близких по весу трех моделей фирмы Hamm, созданных по своеобразному принципу (за счет увеличения пригруза колеблющегося вальца без изменения его веса и других показателей вибрации).

В табл. 2 представлены также некоторые наиболее крупные виброкатки двух фирм (Bomag , Orenstein and Koppel ), в том числе кулачковые их аналоги, и модели широко использовавшихся ранее на автодорожных и гидротехнических стройках СССР (России) прицепных виброкатков (А-8, А-12, ПВК-70ЭА ).

Режим вибрации Грунт рыхлый, К у = 0,85–0,87 h = 60 см;
Е 0 = 60 кгс/см 2 а = 1,1
K d R 0 , тс p kd , кгс/см 2 σ od , кгс/см 2
Dynapac, CA 302D, гладкий,
Q вm = 8,1т Р 0 = 14,6/24,9 тс
слабый 1,85 15 3,17 4,8
сильный 2,12 17,2 3,48 5,2
Hamm 3412, гладкий,
Q вm = 6,7т Р 0 = 21,5/25,6 тс
слабый 2,45 16,4 3,4 5,1
сильный 3 20,1 3,9 5,9
Hamm 3414, гладкий,
Q вm = 8,2т P 0m = 21,5/25,6 тс
слабый 1,94 15,9 3,32 5
сильный 2,13 17,5 3,54 5,3
Hamm 3516, гладкий,
Q вm = 9,3т
P 0m = 21,5/25,6 тс
слабый 2,16 20,1 3,87 5,8
сильный 2,32 21,6 4,06 6,1
Bomag, BW 225D-3, гладкий,
Q вm = 17,04т
P 0m = 18,2/33,0 тс
слабый 1,43 24,4 4,24 6,4
сильный 1,69 28,6 4,72 7,1

Q вm = 16,44т
P 0m = 18,2/33,0 тс
слабый 1,34 22 12,46 18,7
сильный 1,75 28,8 14,9 22,4

Q вm = 17,57т P 0m = 34/46 тс
слабый 1,8 31,8 5 7,5
сильный 2,07 36,4 5,37 8,1

Q вm = 17,64т P 0m = 34/46 тс
слабый 1,74 30,7 15,43 23,1
сильный 2,14 37,7 17,73 26,6
Германия, А-8, гладкий,
Q вm = 8т P 0m = 18 тс
один 1,75 14 3,14 4,7
Германия, А-12, гладкий,
Q вm = 11,8т P 0m = 36 тс
один 2,07 24,4 4,21 6,3
Россия, ПВК-70ЭА, гладкий,
Q вm = 22т P 0m = 53/75 тс
слабый 1,82 40,1 4,86 7,3
сильный 2,52 55,5 6,01 9,1

Фирма, модель виброкатка, тип вальца Режим вибрации Грунт плотный, К у = 0,95–0,96 h = 60 см;
Е 0 = 240 кгс/см 2 а = 2
K d R 0 , тс p kd , кгс/см 2 σ 0d , кгс/см 2
Dynapac, CA 302D, гладкий,
Q вm = 8,1т P 0 = 14,6/24,9 тс
слабый 2,37 19,2 3,74 8,9
сильный 3,11 25,2 4,5 10,7
Hamm 3412, гладкий,
Q вm = 6,7т P 0 = 21,5/25,6 тс
слабый 3,88 26 4,6 11
сильный 4,8 32,1 5,3 12,6
Hamm 3414, гладкий,
Q вm = 8,2т P 0 = 21,5/25,6 тс
слабый 3,42 28 4,86 11,6
сильный 3,63 29,8 5,05 12
Hamm 3516, гладкий,
Q вm = 9,3т P 0 = 21,5/25,6 тс
слабый 2,58 24 4,36 10,4
сильный 3,02 28,1 4,84 11,5
Bomag, BW 225D-3, гладкий,
Q вm = 17,04т
P 0 = 18,2/33,0 тс
слабый 1,78 30,3 4,92 11,7
сильный 2,02 34,4 5,36 12,8
Bomag, BW 225РD-3, кулачковый,
Q вm = 16,44т
P 0 = 18,2/33,0 тс
слабый 1,82 29,9 15,26 36,4
сильный 2,21 36,3 17,36 41,4
Orenstein and Koppel, SR25S, гладкий,
Q вm = 17,57т P 0 = 34/46 тс
слабый 2,31 40,6 5,76 13,7
сильный 2,99 52,5 6,86 16,4
Orenstein and Koppel, SR25D, кулачковый,
Q вm = 17,64т P 0 = 34/46 тс
слабый 2,22 39,2 18,16 43,3
сильный 3 52,9 22,21 53
Германия, А-8, гладкий,
Q вm = 8т P 0 = 18 тс
один 3,23 25,8 4,71 11,2
Германия, А-12, гладкий,
Q вm = 11,8т P 0 = 36 тс
один 3,2 37,7 5,6 13,4
Россия, ПВК-70ЭА, гладкий,
Q вm = 22т P 0 = 53/75 тс
слабый 2,58 56,7 6,11 14,6
сильный 4,32 95,1 8,64 20,6

Таблица 2

Анализ данных табл. 2 позволяет сделать некоторые выводы и заключения, в том числе практического плана:

  • создаваемые глаковальцовыми виброкатками, в том числе среднего веса (СА302D, Hamm 3412 и 3414 ), динамические контактные давления заметно превосходят (на подуплотненных грунтах в 2 раза) давления тяжелых статических катков (пневмоколесного типа весом 25т и более), поэтому они способны достаточно эффективно и с приемлемой для дорожников толщиной слоя уплотнять несвязные, малосвязные и легкие связные грунты;
  • кулачковые виброкатки, в том числе наиболее крупные и тяжелые, по сравнению со своими гладковальцовыми аналогами, могут создавать в 3 раза более высокие контактные давления (до 45–55 кгс/см 2), и поэтому они пригодны для успешного уплотнения высокосвязных и достаточно прочных тяжелых суглинков и глин, включая их разновидности с пониженной влажностью; анализ возможностей этих виброкатков по контактным давлениям показывает, что есть определенные предпосылки несколько повысить эти давления и увеличить толщину слоев связных грунтов, уплотняемых крупными и тяжелыми их моделями, до 35–40 см вместо сегодняшних 25–30 см;
  • опыт фирмы «Hamm» по созданию трех различных виброкатков (3412, 3414 и 3516) с одинаковыми вибрационными параметрами (масса колеблющегося вальца, амплитуда, частота, центробежная сила) и разной общей массой вибровальцового модуля за счет пригруза рамы следует признать интересным и полезным, но не на все 100% и прежде всего с точки зрения незначительной разницы создаваемых вальцами катков динамических давлений, например, у 3412 и 3516; но зато у 3516 время пауз между импульсами нагружения сокращается на 25–30%, увеличивая время контакта вальца с грунтом и повышая кпд передачи энергии последнему, что способствует прониканию в глубь грунта более высокой плотности;
  • на основе сравнения виброкатков по их параметрам или даже по результатам практических испытаний некорректно, да и вряд ли справедливо, утверждать, что этот каток вообще лучше, а другой – плохой; каждая модель может быть хуже или, наоборот, хороша и пригодна для конкретных своих условий применения (тип и состояние грунта, толщина уплотняемого слоя); приходится только сожалеть, что до сих пор не появились образцы виброкатков с более универсальными и регулируемыми параметрами уплотнения для использования в более широком диапазоне типов и состояний грунтов и толщин отсыпаемых слоев, что могло бы избавить дорожника от необходимости приобретать набор грунтоуплотняющих средств разных типов по весу, габаритам и уплотняющей способности.

Некоторые из сделанных выводов могут показаться не такими уж новыми и даже уже известными из практического опыта. В том числе, и о бесполезности применения гладковальцовых виброкатков на уплотнении связных грунтов, особенно маловлажных.

Автор в свое время отрабатывал на специальном полигоне в Таджикистане технологию уплотнения лангарского суглинка, укладываемого в тело одной из самых высоких плотин (300 м) теперь уже действующей Нурекской ГЭС. В состав суглинка входили от 1 до 11% песчаных, 77–85% пылеватых и 12–14% глинистых частиц, число пластичности было 10–14 , оптимальная влажность – около 15,3–15,5%, естественная влажность составляла всего 7–9%, т.е. не превышала 0,6 от оптимального значения.

Уплотнение суглинка производ илось разными катками, в том числе специально созданным для этой стройки очень крупным прицепным виброкатком ПВК-70ЭА (22т, см. табл. 2), имевшим достаточно высокие вибрационные параметры (амплитуда 2,6 и 3,2 мм, частота 17 и 25 Гц, центробежная сила 53 и 75 тс). Однако из-за низкой влажности грунта требуемое уплотнение 0,95 этим тяжелым катком удалось получить только в слое не более 19 см.

Более эффективно и успешно этим катком, а также А-8 и А-12 выполнялось уплотнение сыпучих гравийно-галечниковых материалов, укладываемых слоями до 1,0–1,5 м.

По измеренным напряжениям специальными датчиками, помещаемыми в насыпь на различную глубину, построена кривая затухания этих динамических давлений по глубине грунта, уплотняемого тремя указанными виброкатками (рис. 2).


Рис. 2. Кривая затухания экспериментальных динамических давлений

Несмотря на довольно значительные различия в общем весе, габаритах, параметрах вибрации и контактных давлениях (различие доходило до 2–2,5 раз) значения экспериментальных давлений в грунте (в относительных единицах) оказались близкими и подчиняющимися одной закономерности (пунктирная кривая на графике рис. 2) и аналитической зависимости, показанной на том же графике.

Интересно, что точно такая же зависимость присуща экспериментальным кривым затухания напряжений при чисто ударном нагружении грунтового массива (трамбующая плита диаметром 1 м и весом 0,5–2,0т). И в том и другом случае показатель степени α остается неизменным и равным или близким 3/2. Изменяется только коэффициент K в соответствии с характером или «остротой» (агрессивностью) динамической нагрузки от 3,5 до 10. При более «остром» нагружении грунта он больше, при «вялом» – меньше.

Этот коэффициент K служит как бы «регулировщиком» степени затухания напряжений по глубине грунта. При высоком его значении напряжения быстрее снижаются, с удалением от поверхности нагружения и толщина прорабатываемого слоя грунта уменьшается. С уменьшением K характер затухания становится более плавным и приближающимся к кривой затухания статических давлений (на рис. 2 у Буссинэ α = 3/2 и K = 2,5). В этом случае в глубь грунта как бы «проникают» более высокие давления и толщина слоя уплотнения возрастает.

Характер импульсных воздействий виброкатков не очень сильно варьируется, и можно предположить, что значения K будут в пределах 5–6. А при известном и близком к стабильному характере затухания относительных динамических давлений под виброкатками и определенных значениях необходимых относительных напряжений (в долях предела прочности грунта) внутри грунтовой насыпи можно, с достаточной долей вероятности, устанавливать толщину слоя, в котором действующими там давлениями будет обеспечена реализация коэффициента уплотнения, например, 0,95 или 0,98.

Практикой, пробными уплотнениями и многочисленными исследованиями ориентировочные значения таких внутригрунтовых давлений установлены и представлены в табл. 3.


Таблица 3

Существует также упрощенный прием определения толщины уплотняемого слоя гладковальцовым виброкатком, по которому каждая тонна веса вибровальцового модуля способна обеспечить примерно следующую толщину слоя (при оптимальной влажности грунта и нужных параметрах виброкатка):

  • пески крупные, средние, ПГС – 9–10 см;
  • пески мелкие, в том числе с пылью – 6–7 см;
  • супеси легкие и средние – 4–5 см;
  • легкие суглинки – 2–3 см.

Заключение. Современные гладковальцовые и кулачковые виброкатки являются эффективными грунтоуплотняющими средствами, способными обеспечить требуемое качество возводимого земляного полотна. Задача дорожника состоит в грамотном осмыслении возможностей и особенностей этих средств для правильного ориентирования при их выборе и практическом применении.

Коэффициент уплотнения любого сыпучего материала показывает, насколько можно уменьшить его объем при той же массе за счет трамбовки или естественной усадки. Используют этот показатель для определения количества заполнителя как при покупке, так и собственно в процессе строительства. Поскольку насыпной вес щебня любой фракции после трамбования увеличится, необходимо сразу заложить запас материала. А чтобы не закупить лишнего, пригодится поправочный коэффициент.

Коэффициент уплотнения (К у) – важный показатель, который нужен не только для правильного формирования заказа материалов. Зная этот параметр для выбранной фракции, можно прогнозировать дальнейшую усадку гравийного слоя после нагружения его строительными конструкциями, а также устойчивость самих объектов.

Поскольку коэффициент трамбовки представляет собой степень уменьшения объема, он меняется под влиянием некоторых факторов:

1. Способа и параметров загрузки (например, с какой высоты выполняется засыпка).

2. Особенностей транспорта и длительности пути – ведь даже в неподвижной массе происходит постепенное уплотнение, когда она проседает под собственным весом.

3. Фракции щебенки и содержания зерен меньшей крупности, чем нижняя граница конкретного класса.

4. Лещадность – игольчатые камни дают не такую большую осадку, как кубовидные.

От того, насколько точно была определена степень уплотнения, в дальнейшем зависит прочность бетонных конструкций, оснований зданий и дорожных покрытий.

Однако не стоит забывать, что трамбовка на площадке порой выполняется только по верхнему слою, и в этом случае расчетный коэффициент не вполне соответствует фактической усадке подушки. Особенно этим грешат домашние умельцы и полупрофессиональные строительные бригады из ближнего зарубежья. Хотя по требованиям технологии каждый слой засыпки должен укатываться и проверяться отдельно.

Еще один нюанс – степень трамбовки рассчитывается для массы, которая сжимается без бокового расширения, то есть ограничена стенками и не может расползтись. На площадке такие условия для засыпки любой фракции щебня создаются не всегда, так что небольшая погрешность сохранится. Учитывайте это при расчете осадки крупных конструкций.

Уплотнение при транспортировке

Найти какое-то стандартное значение сжимаемости не так просто – слишком много факторов на него влияет, о чем мы говорили выше. Коэффициент уплотнения щебня может указывать поставщик в сопроводительных документах, хотя ГОСТ 8267-93 напрямую этого не требует. Но транспортировка гравия, особенно больших партий, выявляет значительную разницу объемов при загрузке и в конечной точке доставки материала. Поэтому поправочный коэффициент, учитывающий его уплотнение, обязательно вносится в договор и контролируется в пункте приема.

Единственное упоминание со стороны действующего ГОСТ – заявленный показатель независимо от фракции не должен превышать 1,1. Поставщики об этом, конечно же, знают и стараются делать небольшой запас, чтобы не было возвратов.

Способом измерений часто пользуются во время приемки, когда щебень для строительства привозят на площадку, ведь заказывают его не тоннами, а кубометрами. С приходом транспорта груженый кузов нужно рулеткой обмерить изнутри, чтобы рассчитать объем доставленного гравия, а потом умножить его на коэффициент 1,1. Это позволит примерно определить, сколько кубов было засыпано в машину до отправки. Если полученная с учетом уплотнения цифра будет меньше указанной в сопроводительных документах, значит, автомобиль был недогружен. Равна или больше – можете командовать разгрузку.

Уплотнение на площадке

Приведенная выше цифра учитывается только при транспортировке. В условиях стройплощадки, где трамбование щебня выполняется искусственно и с применением тяжелых машин (виброплита, каток), этот коэффициент может возрасти до 1,52. А исполнителям необходимо знать усадку гравийной засыпки наверняка.

Обычно требуемый параметр задается в проектной документации. Но когда точное значение не нужно, пользуются усредненными показателями из СНиП 3.06.03-85:

  • На прочный щебень фракции 40-70 дается уплотнение 1,25-1,3 (если его марка не ниже М800).
  • Для пород крепостью до М600 – от 1,3 до 1,5.

Для мелких и средних классов крупности 5-20 и 20-40 мм эти показатели не установлены, так как они чаще используются только при расклинцовке верхнего несущего слоя из зерен 40-70.

Лабораторные исследования

Коэффициент уплотнения рассчитывается на основании данных лабораторных испытаний, где масса подвергается трамбовке и проверке на различных приспособлениях. Здесь есть свои методы:

1. Замещение объемов (ГОСТ 28514-90).

2. Стандартное послойное уплотнение щебня (ГОСТ 22733-2002).

3. Экспресс-методы с применением одного из трех типов плотномеров: статического, водобаллонного или динамического.

Результаты можно получить сразу же или по истечении 1-4 дней, в зависимости от выбранного исследования. Одна проба для стандартного испытания обойдется в 2500 рублей, всего их понадобится не меньше пяти. Если данные нужны в течение дня, используют экспресс-методы по итогам отбора как минимум 10 точек (по 850 руб. за каждую). Плюс придется оплатить выезд лаборанта – еще около 3 тысяч. Но на строительстве крупных объектов не обойтись без точных данных, а тем более без официальных документов, подтверждающих соблюдение подрядчиком требований проекта.

Как узнать степень трамбовки самостоятельно?

В полевых условиях и для нужд частного строительства тоже выйдет определить искомый коэффициент по каждому размеру: 5-20, 20-40, 40-70. Но для этого сперва понадобится узнать их насыпную плотность. Она изменяется в зависимости от минералогического состава, хоть и незначительно. Гораздо большее влияние на объемный вес оказывают фракции щебня. Для расчета можно пользоваться усредненными данными:

Фракции, мм Насыпная плотность, кг/м3
Гранит Гравий
0-5 1500
5-10 1430 1410
5-20 1400 1390
20-40 1380 1370
40-70 1350 1340

Более точные данные плотности для конкретной фракции определяют лабораторным путем. Или взвешиванием известного объема строительного щебня с последующим несложным расчетом:

  • Насыпной вес = масса / объем.

После этого смесь укатывается до того состояния, в котором она будет использоваться на площадке, и измеряется рулеткой. Снова производится расчет по приведенной выше формуле, и в итоге получают две разных плотности – до и после трамбовки. Поделив обе цифры, узнаем коэффициент уплотнения конкретно для этого материала. При одинаковом весе проб можно просто найти отношение двух объемов – результат будет тот же.

Обратите внимание: если показатель после трамбовки разделить на первоначальную плотность, ответ будет больше единицы – по сути, это коэффициент запаса материала на уплотнение. В строительстве им пользуются, если известны конечные параметры гравийной подушки и нужно определить, сколько щебня выбранной фракции заказывать. При обратном вычислении получается значение меньше единицы. Но цифры эти равнозначные и при расчетах важно только не запутаться, какую из них брать.

Коэффициент уплотнения (трамбовки) ПГС, песка, щебня, грунта.

Коэффициент уплотнения (Купл) — это нормативное число, которое определяется ГОСТами и СНИПами, учитывающий во сколько раз сыпучий материал (а именно ПГС, песок, щебень, грунт и др.) уплотнился (следовательно, уменьшился и его наружный объем) при перевозке и трамбовке. Значение его колеблется в пределах 1,05 — 1,52:Коэффициент уплотнения учитывают от объёма поставленного сыпучего материала (грунт, пгс, песок, щебень, керамзит и т.д.), а также от механизма уплотнения (трамбовки). Немало важным является само качество инертного материала. К примеру, ПГС (песчано-гравийная смесь) может содержать различное содержание гравия (от 10% до 90%), а отсюда меняться К упл. Исходя из этого, данные в таблице предоставлены средние.

Коэффициентом уплотнения называется безразмерное число, показывающее степень уменьшения наружного объема сыпучего зернистого строительного материала при его перевозке транспортом или трамбовке. Используется применительно к песчано-гравийным смесям, песку, щебню, грунту.

Каждый вид щебня имеет свою маркировку, указанную в принятом стандарте (ГОСТ 8267-93). В нем же описаны методы определения коэффициента уплотнения. Производители должны указать данный параметр в маркировке щебня того или иного вида. Степень уплотнения определяется также специалистами экспериментальным путем. Результаты могут быть получены в течение 3-х дней. Величину уплотнения щебня измеряют и экспресс методами. Для этого используются статические и динамические плотномеры. Расходы на измерение значения коэффициента в лабораторных условиях значительно ниже, чем прямо на стройплощадке.

Для чего нужно знать значение коэффициента уплотнения?

Знание точного значения Ку (коэффициента уплотнения щебня) требуется для определения: а) массы закупаемого строительного материала; б) степени дальнейшей усадки щебня в строительных работах. В обоих случаях нельзя допускать погрешностей.

Массу щебня (в кг)можно вычислить перемножив значения 3-х величин:
— объема заполнения (в м3);
— удельного веса (в кг/м3);
— коэффициента уплотнения (в большинстве случаев колеблется в пределах от 1,1 до 1,3).

Специалисты пользуются таблицами средней массы щебня в зависимости от фракции. Так, например,в 1 м3 щебня умещается 1500 кг фракции 0-5 мм и 1470 кг – фракции 40-70 мм .

Работ с сыпучими материалами связана и с такой величиной, как насыпная плотность. Ее учет обязателен в процессе расклинцовки, укладки щебня, расчета состава бетона. Ее значение определяется опытным путем с помощью специальных сосудов (объем до 50 л). Для этого, разность масс пустого и наполненного щебнем сосуда, делится на объем самого сосуда.

Расклинцовка — плотная укладка щебеночного основания с помощью зерен различных фракций. Суть технологии –заполнение больших пустот между крупными зернами мелкими кусками.

Трамбовка – одно из обязательных условий упрочения основания дорог или фундаментных оснований зданий. Проводится с помощью специальной техники (механический каток, виброплита) или ручной трамбовки. Качество уплотнения контролируется специальным прибором. Величину уплотнения (трамбовки) можно определить несколькими методами. В частности, методом динамического зондирования.

Коэффициент уплотнения также используется при расчете необходимого количества сыпучих материалов для планировки участка щебнем. Пусть толщина укладки – 20 см. Какое количество отсева нам нужно для 1 м2 участка? Умножив объем участка на удельный вес (1500 кг/м3) и на коэффициент уплотнения (1,3), получим 390 кг.

Следует помнить, что различные фракции щебня обладают разным коэффициентом уплотнения. Этот параметр приобретает большое значение при выполнении проектировочных работ на основе щебня.