Как известно, электричество, которое поставляется к нам в дом, является трёхфазным. Напряжение между любыми двумя выходами составляет 380 В. В то же время, мы знаем, что используемое в бытовых приборах напряжение, равно 220 В. Как одно преобразуется в другое?

Важную роль здесь играет нулевой провод. Если замерять напряжение между одной из фаз и этим проводом, то оно как раз и будет равно 220 В. В более современных розетках, предусмотрен дополнительно ещё один нулевой выход - это так называемый защитный ноль.

Возникает естественный вопрос о том, какова разница между двумя упомянутыми нулями? Первый из них, «рабочий ноль» (его мы стараемся определить) - это нейтральный контакт на трёхфазной установке генераторной подстанции, подключённый к нейтральному контакту трёхфазной установке в доме или отдельном подъезде.

Он может быть при этом, вообще не заземлён. Основное назначение состоит в создании замкнутой электрической цепи при питании бытовых приборов. Во втором случае, речь идёт именно о . Его обычно называют «защитное заземление».

В связи с достаточно сложной природой переменного тока, есть некоторые типичные взгляды на нулевой провод и на заземление, которые могут не соответствовать реальному положению вещей:

  1. «На нулевом вообще нет напряжения.» Это не так. Он подключён к нулевому разъёму на подстанции и предназначен для создания разности потенциалов на выходе. Иногда он находится под напряжением.
  2. «Если есть заземление, то короткого замыкания точно не будет.» В большинстве случаев, это так. Но при слишком быстром нарастании тока, он может не успеть вовремя уйти через заземление.
  3. «Если в кабеле две жилы одинаковые, а третья отличается, то это наверняка земля.» Так должно быть, но иногда это не так.

Способы определения

Цифровой мультиметр

Определение нуля и фазы путём использования мультиметра. Этот прибор очень полезен для работ с электричеством. Он включает в себя различные возможности. Он может быть и амперметром и вольтметром или омметром.

Также, могут быть, в зависимости от конкретного типа, и другие возможности (например, измерение частоты). Эти приборы могут быть как аналоговыми, так и цифровыми.

Использование индикаторной отвёртки. В этой отвёртке имеется прозрачная ручка. Если вставить её в розетку определённым образом, то при попадании на фазу загорится лампочка.

Есть несколько конструкций таких отвёрток. В самом простом случае, при тестировании нужно прикоснуться к концу ручки. Без этого огонёк не загорится.

При визуальном тестировании, назначение проводов можно определить по их расцветке.

Использование специального фазового . Это небольшой цифровой прибор, который помещается в ладони. Один из проводов нужно держать в руке, другим проверяют фазу.

Пошаговые инструкции

Расскажем более подробно о том, как производить такие работы.

При использовании мультиметра, нужно правильно установить его рабочий диапазон. Он должен составлять 220 В для переменного напряжения.

С его помощью можно решить две задачи:

  1. Определить, где фаза, а где «рабочий ноль» или заземление.
  2. Определить, где, собственно, заземление , а где нулевой выход.

Расскажем сначала о том, как выполнить первую задачу. Перед началом, нужно правильно выставить рабочий диапазон прибора. Сделаем его больше, чем 220 В. Два щупа подключены к гнёздам «COM» и «V».

Берём второй из них и прикасаемся к тестируемому отверстию розетки. Если там фаза, то на мультиметре высветится небольшое напряжение. Если фазы там нет, то будет показано нулевое напряжение.

Во втором случае, рабочее напряжение должно составлять 220В. Один провод вставляем туда, где есть фаза. Другим тестируем остальные. При попадании на заземление, будет показано ровно 220 В, в другом случае, напряжение будет немного меньше.

Использование фазового тестера

Один провод держим аккуратно пальцами, другой используем для тестирования. Если в розетке попадаем на фазу, то цифры на индикаторе будут гораздо больше нуля. При попадании на ноль, на экране также будет показан ноль или незначительная величина напряжения.

Это устройство удобно как общедоступностью на рынке радиоизмерительного оборудования, так и тем, что измерения производятся с достаточно высокой точностью.

Использование индикаторной отвёртки

Она представляет собой на вид обычную отвёртку, но с небольшим отличием. У неё прозрачная ручка с маленькой лампочкой внутри. Это, на первый взгляд, достаточно примитивное устройство, на самом деле очень удобно.

Его достаточно просто вставить в отверстие розетки, прикоснувшись при этом пальцем к противоположному концу отвёртки. Если есть фаза, то лампочка загорится. Если там нулевой провод или заземление, то она гореть не будет. Важно помнить, что категорически запрещено в процессе измерения прикасаться к металлической части отвёртки. Это может привести к удару током.

В некоторых случаях, фазу и нулевой провод можно определить без каких-либо приборов или приспособлений. Это можно сделать, если правильно прочесть маркировку. Это ненадёжный способ, но в некоторых случаях он может оказаться полезным.

При работе в современных домах, правила такой маркировки обычно соблюдаются.

Итак, в чём же они состоят:

  1. Тот провод, где находится фаза , обычно имеет коричневый или чёрный цвет.
  2. Нулевой, принято обозначать проводом, имеющим голубой цвет.
  3. Зелёным или жёлтым цветом обозначается провод, который служит для заземления.

Эти правила могли быть другими в предыдущие периоды времени. Также, в последующем они могут измениться. Поэтому, описанный способ годится только для предварительного тестирования назначения проводов.

Как различить заземление и нулевой провод при отключённой фазе?


Предположим, что ток в сети отсутствует. Есть ли какое-нибудь различие в этом случае между заземлением и нулевым проводом? На первый взгляд может показаться что они очень похожи друг на друга.

На самом деле, их функции всё же различаются. Заземление предназначено для аварийных ситуаций. Через него электрический заряд уходит в землю. Нулевой провод - это часть электрической цепи для питания бытовых электроприборов в доме.

Здесь, ток, в отличие от заземления, присутствует. Как же можно различить их? При отключённой фазе нужно просто измерить ток между этим проводом и точно известным заземлением. Если это нулевой провод, то ток, хотя и небольшой, в этом случае будет. Если же тут заземление, то никакого тока здесь быть не может.

В каких случаях может понадобиться?


При огромном разнообразии существующих электрических приборов, существует разница в том, какое электрическое питание им нужно. В различных случаях, такие вопросы решаются по-разному.

Иногда, для этого используются специальные устройства – переходники. В некоторых случаях, является необходимым просто правильно сделанное подключение к розетке. В частности, при подключении электрической кухонной плиты, есть необходимость при подключении правильно определить, где в розетке фаза, а где «рабочий ноль».

В этом, и в аналогичных случаях, без такой информации обойтись невозможно.

Другая ситуация, где это необходимо - это разного рода ремонтные работы. При их проведении, нужно знать точно, какой провод под напряжением (он должен или быть отключён или надёжно заизолирован), а какой - нет.

При подключении многих бытовых приборов, действительно не важно с какой стороны будет фаза , а вот для выключателя это может иметь значение. Поясним это.«Фаза» должна подаваться на выключатель, а «ноль» пусть будет подключён напрямую к лампам в люстре.

При этом, в процессе замены лампы в люстре, при выключенном выключателе, человека не ударит током даже в том случае, когда он случайно прикоснётся к .

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы . Стали включать оба трансформатора на параллельную работу и получили. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения . Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока . От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.


Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель , с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о вы можете узнать из нашей статьи.


В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.

Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу - счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику , записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В - ко второму, а фаза С - к третьему зажиму счётчика.


.

Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась. Пришлось самим изготовить «Устройство для определения последовательности чередования фаз» , с помощью которого удалось определить эту правильную последовательность. В результате после устранения нарушения последовательности чередования фаз «самоход» счётчика исчез. Стало быть, отпала нужда платить за неиспользованную садоводами энергию.

Устройство для определения последовательности чередования фаз в трехфазной сети

Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.

Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.

Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).

Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства...» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).


При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло, при котором сработала защита сразу на двух вводных автоматических выключателях.


Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.


Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Нередко при обслуживании электрооборудований необходимо проводить проверку чередования фаз и производить фазировку. Таким чаще всего пользуются при согласовании работы трансформаторов. В нашей статье мы опишем чередование фаз в 3-х фазной сети, необходимые инструменты и способы правильной фазировки.

Вводная история

Представим себе монтаж двух масляных трансформаторов. Электрики провели успешные пусконаладочные работы трансформаторов, вводных выключателей, шин и секционных разделителей. Но, когда попытались запустить трансформаторы параллельно, произошло короткое замыкание . Электромонтеры говорили, что произвели проверку чередования фаз, и все было в порядке. Но фазировку видимо никто не учел, что привело к такой ошибке. Давайте детально рассмотрим суть проблемы данного случая.

Что такое чередование фаз

Трехфазная сеть имеет три фазы, обозначаемые А, В и С. Если вспомнить физику, то это означает, что синусоиды фаз на 120˚ смещены друг от друга. Всего существует шесть типов порядков чередования, которые в свою очередь можно разделить на две группы – прямые и обратные. Прямые чередования выглядят как АВС, ВСА и САВ, а обратные – СВА, ВАС и АСВ. Для проверки чередования фаз используют прибор – фазоуказатель.

Что необходимо для проверки фаз

Фазоуказатель (см. рисунок ниже) состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ).Если диск крутится против часовой стрелки, то это означает обратное чередование(СВА, ВАС или АСВ).

Вернемся к нашей истории с электромонтажниками, они проверили чередование фаз, которое в одном и другом случае совпало. Фазировку было выполнить необходимо, а тут не обойтись без фазоуказателя (ФУ). Электромонтажники соединили разноименные фазы при запуске, а для того, чтобы узнать где именно А, В и С надо было использовать мультиметр или осциллограф.

Прибор мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные. В противоположном случае, линейное напряжение будет означать, что фазы разноименные. Такой способ самый быстрый и простой, но можно также использовать осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

В каких случаях учитывают порядок

Проверка чередования фаз необходима при использовании трехфазных электродвигателей переменного тока. От порядка фаз зависит направление вращения двигателя, это очень важное условие, особенно когда несколько механизмов используют двигатели.

Еще один случай, когда необходимо обратить внимание на чередование фаз, это при работе с электросчетчиком индукционного типа СА4. При обратном порядке иногда случается самопроизвольное вращение диска на счетчике. Современные счетчики не настолько чувствительны к чередованию фаз, но у них на индикаторе тоже появится соответствующие данные.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью который можно в компании Югтелекабель. Если жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

Не всегда стоит полагаться на цветовую маркировку, не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить разные цвета. Поэтому лучше воспользоваться прозвонкой жил.

8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях.наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В-в зеленый и фазы С-в красный. В соответствии с этим фазы часто называют желтой, зеленой и красной: ж, з, к.

Таким образом, в зависимости от рассматриваемого вопроса фаза - это либо угол, характеризующий состоя­ние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз. Трехфазные системы напряжений и тока могут отличаться друг от друга порядком следования фаз. Если фазы (например, сети) следуют друг за другом в порядке А, В, С - это так называемый прямой порядок следования фаз (см. § 7.3). Если фазы следуют друг за другом в порядке А, С, В - это обратный порядок следования фаз.

Порядок следования фаз проверяют индукционным фазоуказателем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2. Фазоуказатель подключают к проверяемой системе напряжений. Зажимы прибора маркированы, т. е. обозначены буквами А, В, С. Если фазы сети совпадут с маркировкой прибора, диск фазоуказателя будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети. Вращение диска в обратном направлении указывает на обратный порядок следования фаз. Получение прямого порядка следования фаз из обратного производится переменой мест двух любых фаз электроустановки.

Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание пута­ницы условимся применять термин "чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз. Итак, под чередованием фаз следует понимать очередность, в которой фазы трехфазной цепи (обмотки и выводы электрических машин, провода линий и т. д.) расположены в пространстве, если обход их кажцый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветке проводов и сборных шин.

Совпадение фаз. При фазировке трехфазных цепей встречаются различные варианты чередования обозначений вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз (рис. 8.2, а, б). Варианты, при которых не совпадает порядок следования фаз, или порядок чередования фаз электроустановки и сети, при включении выключателя приводят к КЗ.


В то же время возможен единственный вариант, когда совпадает то и другое. Короткое замыкание между соединяемыми частями (электроустановкой и сетью) здесь исключено.

Под совпадением фаз при фазировке как раз и понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов вы-ключателя согласованы с обозначением фаз напряжений (рис. 8.2, в).

В большинстве современных кабелей проводники имеют изоляцию разных цветов. Цвета эти имеют определенное значение и выбираются не просто так. Что такое цветовая маркировка проводов и как с ее помощью определить где ноль и заземление, а где — фаза, и будем говорить дальше.

В электрике принято различать провода по цветам. Это намного облегчает и ускоряет работу: вы видите набор проводов разных цветов и, по цвету, можете предположить какой для чего предназначен. Но, если разводка не заводская и делали ее не вы, перед началом работ обязательно надо проверить соответствуют ли цвета предполагаемому назначению.

Для этого берут мультиметр или тестер, проверяют на каждом проводнике наличие напряжения, его величину и полярность (это при проверке сети электропитания) или просто прозванивают куда и откуда идут провода и не меняется ли «в пути» цвет. Так что знание цветовой маркировки проводов — один из необходимых навыков домашнего мастера.

Цветовая маркировка провода заземления

По последним правилам проводка в доме или квартире должна иметь заземление. Последние годы вся бытовая и строительная техника выпускается с заземляющим проводом. Причем заводская гарантия сохраняется только при условии подачи электропитания с работающим заземлением.

Чтобы не путаться для провода заземления принято использовать желто-зеленую окраску. Жесткий одножильный провод имеет зеленый основной цвет с желтой полосой, а мягкий многожильный — основное поле желтого цвета с зеленой продольной полосой. Изредка могут встречаться экземпляры с горизонтальными полосками или просто зеленые, но это — нестандарт.

Цвет провода заземления — одножильного и многожильного

Иногда в кабеле есть только ярко-зеленый или желтый провод. В таком случае именно их используют как «земляной». На схемах «земля» обычно рисуется зеленым цветом. На аппаратуре соответствующие контакты подписываются латинскими буквами PE или в русскоязычном варианте пишут «земля». К надписям часто добавляется графическое изображение (на рисунке ниже).

В некоторых случаях на схемах шина «земля» и подключение к ней обозначается зеленым цветом

Цвет нейтрали

Еще один проводник, который выделяют определенным цветом — нейтраль или «ноль». Для него выделен синий цвет (ярко-синий или темно-синий, изредка — голубой). На цветных схемах эта цепь также прорисовывается синим, подписывается латинской буквой N. Так же подписываются контакты, к которым необходимо подключить нейтраль.

Цвет нейтрали — синий или голубой

В кабелях с гибкими многожильными проводами, как правило, используется более светлые оттенки, а одножильные жесткие проводники имеют оболочку более темных, насыщенных тонов.

Окраска фазы

С фазными проводниками несколько сложнее. Их окрашивают в разные цвета. Исключены уже используемые — зеленый, желтый и синий — а все остальные могут присутствовать. При работе с этими проводами надо быть особенно аккуратными и внимательными, ведь именно на них присутствует напряжение.

Цветовая маркировка проводов: какого цвета фаза — возможные варианты

Итак, наиболее часто встречающаяся цветовая маркировка проводов фазы — красный, белый и черный. Еще могут быть коричневый, бирюзовый оранжевый, розовый, фиолетовый, серый.

На схемах и клеммах фазные провода подписываются латинской буквой L, в многофазных сетях рядом стоит номер фазы (L1, L2, L3). П кабелях с несколькими фазами они имеют разную окраску. Так проще при разводке.

Как определить правильно ли подключены провода

При попытке установить дополнительную розетку, подключить люстру, бытовую технику, требуется знать, какой именно провод является фазным, какой нулевым, а какой — заземляющим. При неправильном подключении техника выходит из строя, а неосторожное прикосновение к токоведущим проводам может окончиться печально.

Надо убедиться что цвета проводов — земля, фаза, ноль — совпадают с их разводкой

Проще всего ориентироваться по цветовой маркировке проводов. Но не всегда все просто. Во-первых, в старых домах проводка обычно однотонная — торчат два-три провода белого или черного цвета. В этом случае надо разбираться конкретно, после чего навешивать бирки или оставлять цветные метки. Во-вторых, даже если в кабеле проводники окрашены в разные цвета, и вы визуально можете найти нейтраль и землю, правильность своих предположений надо проверить. Случается, что при монтаже цвета перепутаны. Потому сначала перепроверяем правильность предположений, потом начинаем работы.

Для проверки понадобятся специальные инструменты или измерительные приборы:

  • индикаторная отвертка;
  • мультиметр или тестер.

Найти фазный провод можно при помощи индикаторной отвертки, для определения нуля и нейтрали нужен будет тестер или мультиметр.

Проверка с индикатором

Индикаторные отвертки бывают нескольких видов. Есть модели, на которых светодиод зажигается при прикосновении металлической частью к токоведущим частям. В других моделях для проверки требуется дополнительно нажать кнопку. В любом случае при наличии напряжения зажигается светодиод.

При помощи индикаторной отвертки можно найти фазы. Металлической частью прикасаемся к оголенному проводнику (при необходимости наживаем на кнопку) и смотрим, горит ли светодиод. Горит — это фаза. Не горит — нейтраль или земля.

Работаем аккуратно, одной рукой. Второй к стенам или металлическим предметам (трубам, например) не прикасаемся. Если провода в проверяемом кабеле длинные и гибкие, можно придержать их второй рукой за изоляцию (держитесь подальше от оголенных концов).

Проверка с мультиметром или тестером

На приборе выставляем шкалу, которая немного больше предполагаемого напряжения в сети, подключаем щупы. Если позваниваем бытовую однофазную сеть 220В, ставим переключатель в положение 250 В. Одним щупом прикасаемся к оголенной части фазного провода, вторым — к предполагаемой нейтрали (синего цвета). Если при этом стрелка на приборе отклоняется (запоминаем ее положение) или на индикаторе загорается цифра, близкая к 220 В. Проделываем ту же операцию со вторым проводником — который по цвету определили как «землю». Если все верно, показания прибора должны быть ниже — меньше чем те, которые были перед этим.

В случае, если цветовая маркировка проводов отсутствует, придется перебирать все пары, определяя назначение проводников по показаниям. Пользуемся тем же правилом: при прозвонке пары «фаза-земля» показания ниже, чем при прозвонке пары «фаза-ноль».

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Мультиметр

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:


Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый — на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное — нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две — каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная — поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль — линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально — 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля — масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии — ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Я электрик с большим стажем. Тридцать лет работаю с электричеством. Бывает, что меня спрашивают, как отличить фазу от нуля в отсутствии приборов. Вопрос не простой. Сейчас я попытаюсь рассказать все, что об этом знаю.

Фаза и ноль. В чем разница?

Строго говоря, фазный и нулевой проводники не имеют больших различий. В цепях переменного тока за одну секунду ток меняет направление пятьдесят раз. Как тут отличишь, какую функцию выполняет тот или иной провод? Единственное отличие между фазным и нулевым проводниками состоит в том, что «ноль» (нулевой проводник) соединен с Землей. Именно так. В землю закопан электрический контур и на подстанции один из выводов трансформатора соединен с этим контуром. Такая электрическая схема называется сетью с глухо заземленной нейтралью. В такой схеме нулевой провод имеет потенциал земли. Мы с вами тоже имеем потенциал земли. Поэтому, коснувшись заземленного проводника мы не получаем удар током.

Теперь, когда вы имеете представление о «нуле» перейдем к «фазе». Напряжение фазного проводника 50 раз в секунду меня меняет свою полярность относительно «нуля». В цепи фаза-ноль ток изменяет свое направление тоже 50 раз в секунду. Если ток потечет через тело человека, то это закончится очень плохо. Поэтому проявляйте крайнюю осторожность.

На самом деле нет ни одного прибора, который бы «чувствовал» «фазу». Все приборы фиксируют, течет ли ток от данного конкретного провода на «землю» или нет. Даже однополюсный пробник, которым часто пользуются для обнаружения фазных проводов, работает по этому принципу. Сейчас мы не станем вдаваться в подробности работы таких пробников.

Ищем «фазу»

Если нам необходимо отличить фазу от ноля, то мы должны создать электрическую цепь, при помощи которой мы будем однозначно знать, течет ли ток от выбранного нами провода на «землю» или нет. На ум приходит несколько приборов, которые смогут нам помочь:

  • лампочка,
  • еще одна лампочка, неоновая,
  • светодиод.

Есть еще один способ, очень ненадежный. В последнее время провода стали маркировать по расцветке изоляции. Нулевой провод имеет синий цвет, изоляция заземляющего провода имеет желто-зеленую расцветку. Но кто поручиться, что электрик выполнил подключение согласно правилам или он не был дальтоником?

«Дедовский» способ

Многие десятилетия электрики использовали электрическую лампочку в качестве измерительного прибора. Лампа накаливания, патрон и два провода. Этот прибор назывался «контролькой». Для определения «фазы» одним выводом контрольки касались провода, другим металлического предмета, который заведомо соединен с землей. Это мог быть корпус щитка освещения, или другого распределительного устройства. По правилам они все заземляются. К сожалению, найти заземленный предмет не всегда возможно. Встречал советы, когда в качестве земли предлагали использовать трубы отопления или водопровода. Не советую категорически! Можно ударить током ни чего не подозревающего человека. Поверьте на слово. Если вы в собственном доме, на даче роль «земли» может выполнить металлический штырь забитый в землю, другие металлические предметы, имеющие надежное соединение с землей.

Контрольку запрещено использовать потому, что ее можно присоединить к двум фазным проводам. В этом случае напряжение на ней будет 1.7 раза выше напряжения сети, лампочка может просто взорваться. Если вы уверены, что один из проводов контрольки присоединен к земле, то опасаться взрыва не стоит.

Существуют более безопасные приборы. Случайно под рукой может оказаться индикаторная лампа от старой связной аппаратуры. Эти лампочки, «инки», начинают светиться, если один из выводов присоединен к фазному проводу. Однополюсные пробники оснащены подобными лампами.

Более серьезным прибором будет комбинация светодиода и соединенного с ним последовательно токоограничительного резистора. Понятно, что этот случай для людей, дружащих с паяльником, например радиолюбителей. Резистор должен иметь сопротивление несколько десятков килоомм.

Во избежание поражения током нужно следовать одному простому правилу. Во время измерений не касаться проводов и металла ни одной частью тела.